

Velletri

Conegliano

Vitigni resistenti nel Lazio: Il ruolo del CREA VE

Riccardo Velasco, PhD

Velletri

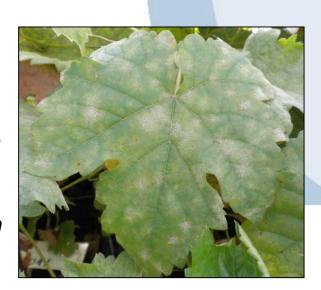
Conegliano

5.000 varietà (probabilmente sottostimata) nel mondo, 545 registrate nel catalogo nazionale potrebbero far pensare ad un numero più che sufficiente per una scelta varietale, tuttavia con resistenze ai patogeni...

Velletri

Conegliano

....non abbiamo molto materiale disponibile se non negli ultimi anni



Sintomi di Peronospora (<u>DM</u>)

(Plasmopara viticola)

Sintomi di Oidio (<u>PM</u>)

(Oidium tuckeri)

Dalla seconda metà dell'800, tre devastanti malattie (fillossera, peronospora e oidio) provenienti dall'America hanno modificato radicalmente la viticoltura Europea, che era sostenibile e non inquinante.

Poichè la vite di origine euroasiatica (Vitis vinifera) oggi largamente coltivata in tutto il mondo per la produzione di vino e uva da tavola) è sensibile alla maggior parte dei patogeni si è dovuto intervenire con l'applicazione di agrofarmaci per contenere le perdite e salvare le piante.

Velletri

Conegliano

Viticoltura di precisione (diagnosi/mappatura tramite telerilevamento)

Prodotti di sintesi con minor ecotossicità

Elicitori di difesa, microorganismi effettivi

Tecniche / agronomiche

Lotta biologica (nemici naturali dei patogeni)

Modelli previsionali

Distribuzione razionale (atomizzatori a recupero)

SOSTENIBILITA'

Velletri

Conegliano

Miglioramento genetico:

- Processo pluriennale
- Impegnativo e costoso
- Impegno pubblico nel ricercare nuove fonti di resistenza e introdurle nel patrimonio genetico

Istituzioni Europee impegnate nel miglioramento genetico

Agenzia Regionale per lo Sviluppo e l'Innovazione dell'Agricoltura nel Lazio

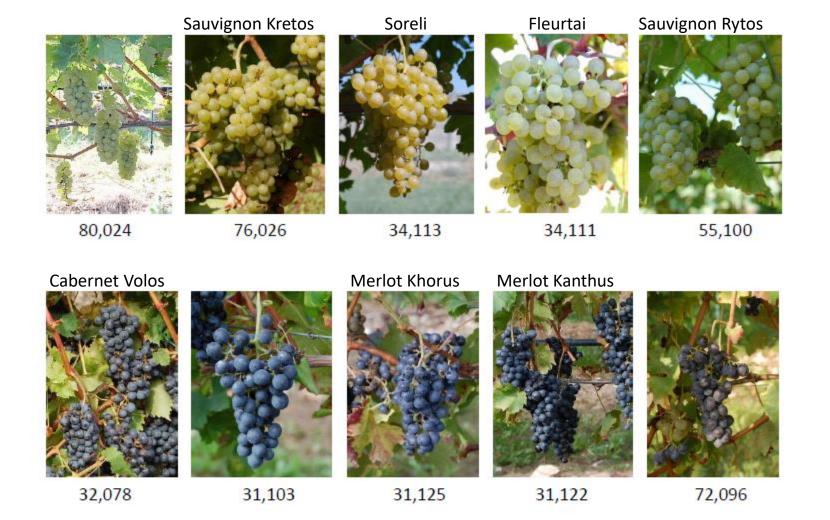
http://www.s

Conegliano

Agenzia Regionale per lo Sviluppo e l'Innovazione dell'Agricoltura nel Lazio

Varietà resistenti registrate nei cataloghi nazionali (una resistenza)

Germania: Regent (r); Bronner (b); Johanniter, Merzling, Solaris, Helios, Prior, Baron, Monarch, Cabernet Cortis, Cabernet Carol, Cabernet Carbon, Calandro, Felicia, Reberger, Villaris


Austria: Roesler (r); Rathay (r)

Italia: Regent, Bronner + altre 6, giugno 2014+10 (UniUD)

According to

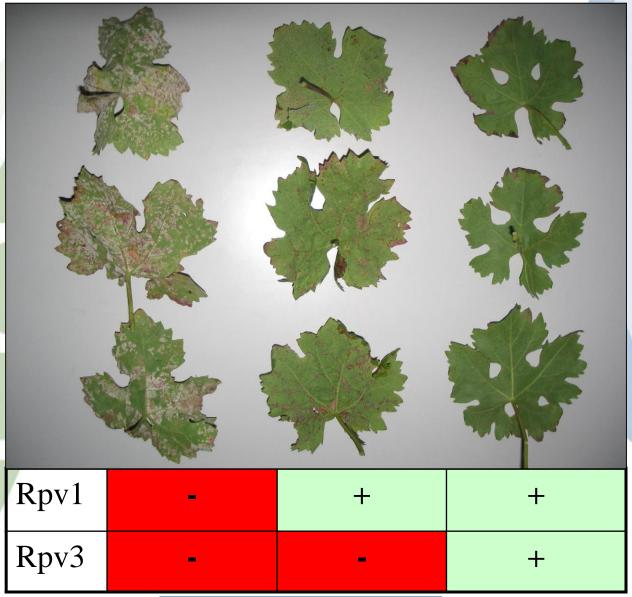
Conegliano

Agenzia Regionale per lo Sviluppo e l'Innovazione dell'Agricoltura nel Lazio

Il miglioramento genetico moderno:

- Selezione assistita
- Identificazione di nuovi marcatori
- Piramidazione mirata (concentrazione di più geni in alcuni genotipi d'«élite»)

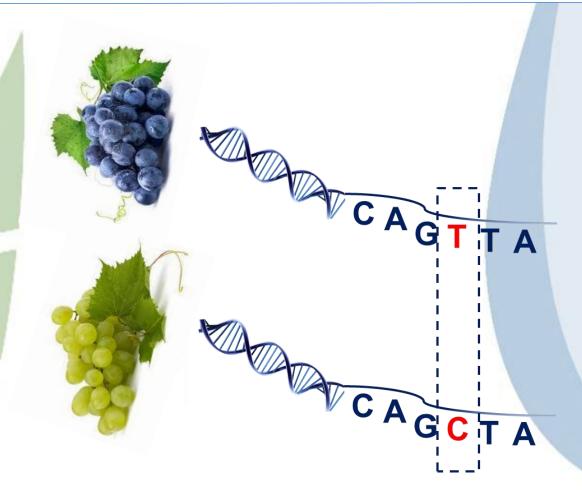
Resistance gene to		markers	crosses			res. genotype
Rpv1	Plasmopara viticola	VMC72 VVIb32	Syrah	X	28-8-78	28-8-78 M. rotun
Rpv2	Plasmopara viticola		Cabernet Sauvignon	X	8624	8624 M. rotund
Rpv3	Plasmopara viticola	UDV-112	Regent	X	Lemberger	Regent
		VVIn16	Chardonnay	X	Bianca	Bianca
		UDV-305				
		VMC/F2				
Rpv4	Plasmopara viticola	VMC7h3 VMCNg2e2.1	Regent	x	Lemberger	Regent
Rpv5	Plasmopara viticola	VVIo52b	Cabernet Sauvignon	x	Gloire de Montpellier	Gloire de Montpellier <i>V. riparia</i>
Rpv6	Plasmopara viticola	VMC8G9	Cabernet Sauvignon	x	Gloire de Montpellier	Gloire de Montpellier V. riparia
Rpv7	Plasmopara viticola	UDV-097	Chardonnay	X	Bianca	Bianca
Rpv8	Plasmopara viticola	VMC1G3.2	Moscato Bianco	x	V. riparia	Wr63 V. riparia
Rpv9	Plasmopara viticola	CCoAOMT	Moscato Bianco	x	V. riparia	Wr63 V. riparia
Rpv10	Plasmopara viticola					V.amurensis



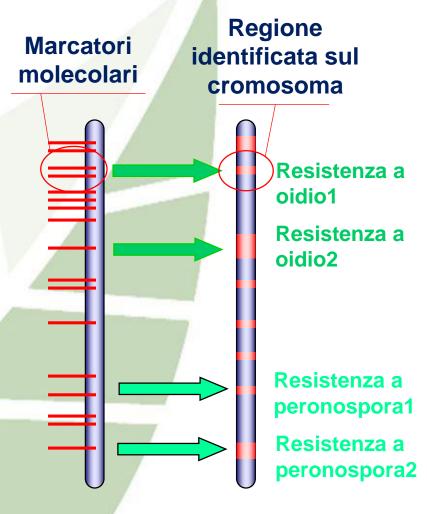
Resistance gene to		markers	crosses			res. genotype
Ren1	Erysiphe necator	UDV-020	Nimrang	X	Kishmish vatkana	Kishmish vatkana
		VMC9h4-2				
		VMCNg4e10.1				
Ren2	Erysiphe necator	CS25	Horizon	X	Illinois 547-1	Illinois 547-1
Ren3	Erysiphe necator	UDV-015b	Regent	X	Lemberger	Regent
		VViv67				
Ren4	4					
Run1	Erysiphe necator	VMC1g3.2	VRH3082-1-42	X	Cabernet Sauvignon	VRH3082-1-42 M. rotundifolia
		VMC4f3.1				
5-gt	anthocyanin 3,5- diglucosides	Gf09_01	Regent	х	Lemberger	Regent

Effetto additivo della resistenza in presenza di geni diversi

(peronospora)



Milioni di polimorfismi identificati


Agenzia Regionale per lo Sviluppo e l'Innovazione dell'Agricoltura nel Lazio

The goal of plant scientist is to explain natural phenotypic variation in terms of simple change in DNA sequence (S. Myles et al. 2009)

Regione cromosomica responsabile della resistenza

ARS AL

Agenzia Regionale per lo Sviluppo e l'Innovazione dell'Agricoltura nel Lazio

Numerosi i marcatori correlati alla resistenza, fonti di resistenza a:

Run1, Rpv1

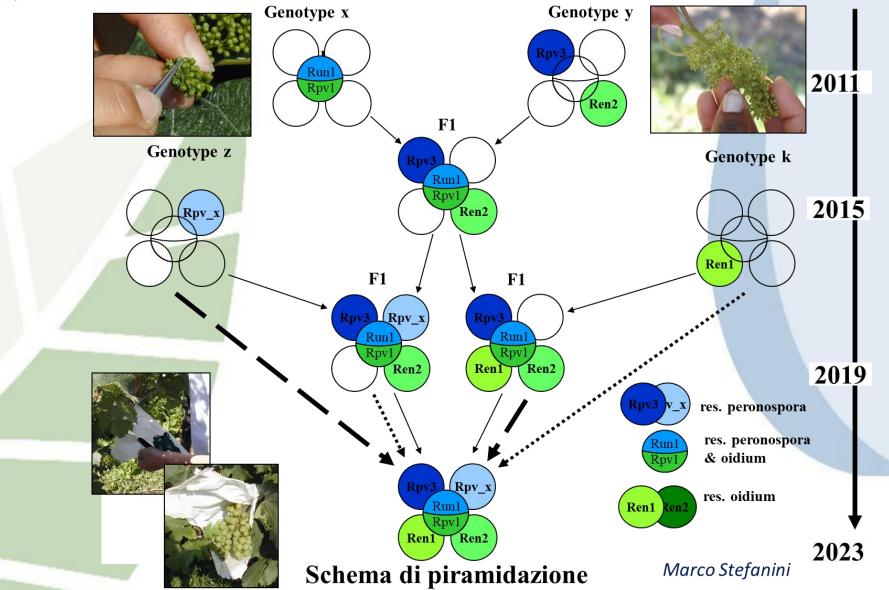
= resistance to oidium and peronospora in Vitis muscadinia

Ren1

= resistance to oidium in "Kishmish vatkana"

Ren2

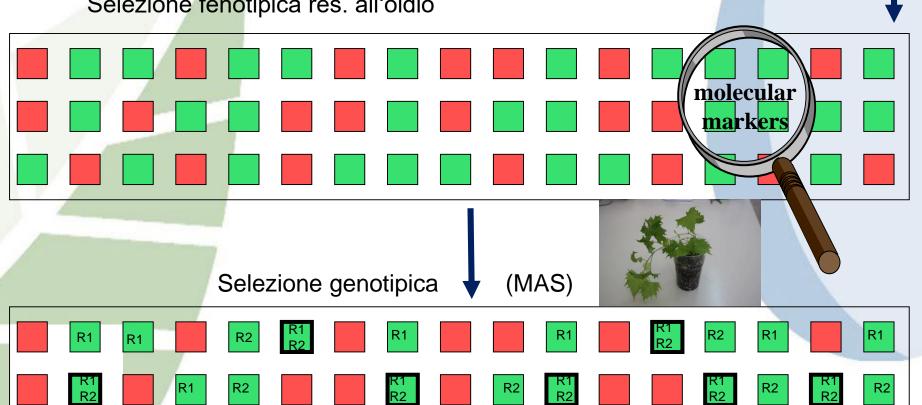
= resistance to oidium in "Regent"


Rpv3

= resistance to peronospora in "Regent"

Rpv_X

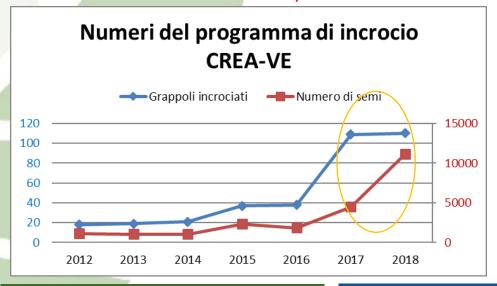
= resistance to peronospora in "Solaris" (Vitis amurensis)



Resistenza (R1) x Resistenza (R2)

Selezione fenotipica res. all'oidio

INCROCI Glera x resistenti



Glera 10 Glera 19

Resistente (P)

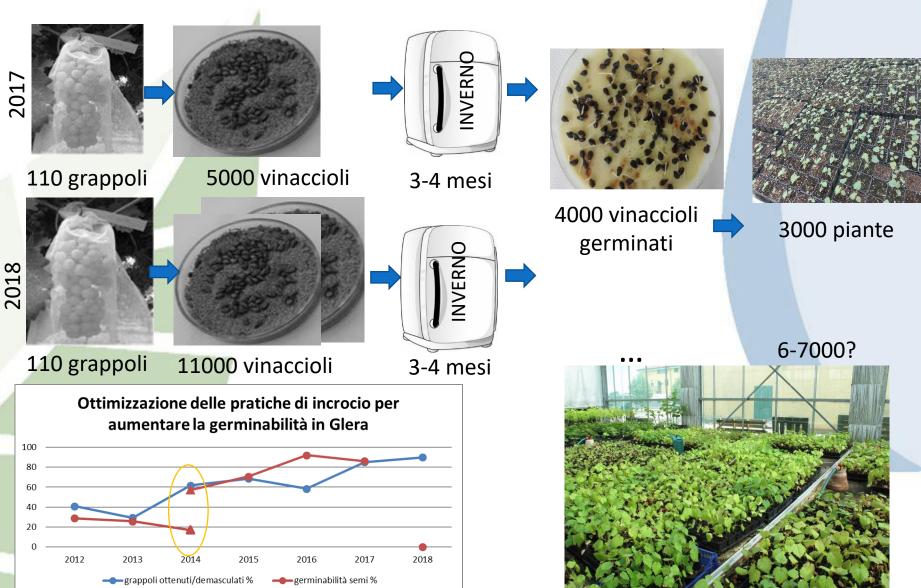
2017: Muscaris, Souvignier Gris, Soreli 2018: Calardis blanc, Cabernet Cantor, Toldi, SK001, SK002

Progenie (F1)

110 grappoli

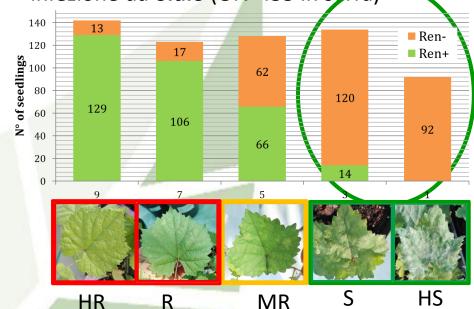
5000 vinaccioli

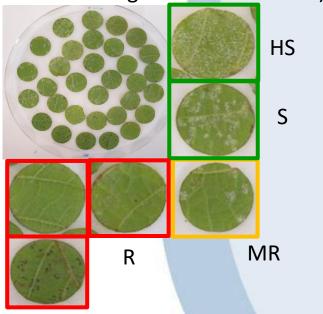
110 grappoli



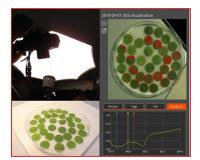
11000 vinaccioli

GERMINAZIONE E MANTENIMENTO SEMENZALI




FENOTIPIZZAZIONE

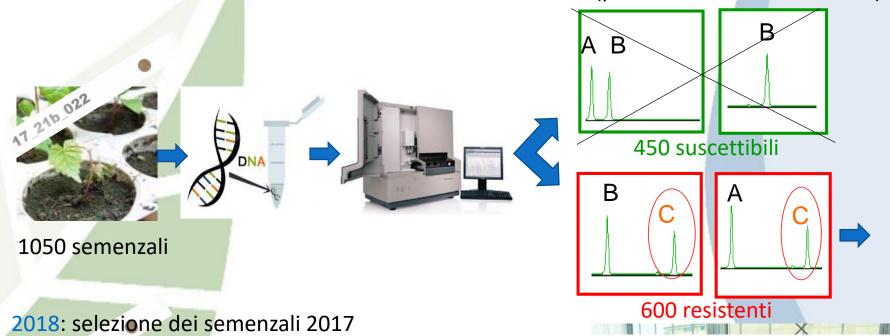
2017. Osservazione e classificazione infezione da oidio (OIV 455 in serra)

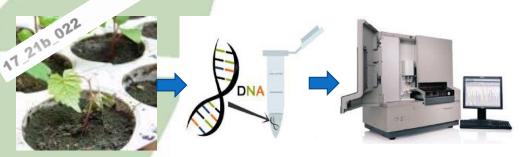


2017. Verifica resistenza da **peronospora** (saggio su dischetto fogliare in laboratorio)

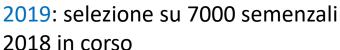
2018. Fenotipizzazione per oidio in serra funzionale alla rimozione delle più sintomatiche (CLASSI 3 E 1) da escludere da analisi molecolari.

HR 2018. **Peronospora**: saggi su disco fogliare e approfondimenti con sensori multi- e iper-spettrale





SELEZIONE MOLECOLARE

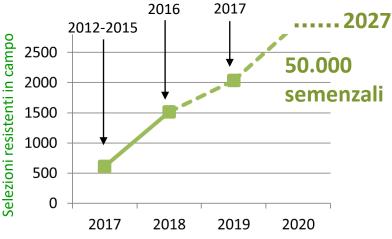

2017: selezione molecolare di 1050 su 1500 semenzali 2016 (precedenti alla convenzione).

2200 semenzali

Circa 900 resistenti (600 doppia)

IMPIANTO

2017: messa a dimora di circa 600 selezioni (di cui 200 da Glera).



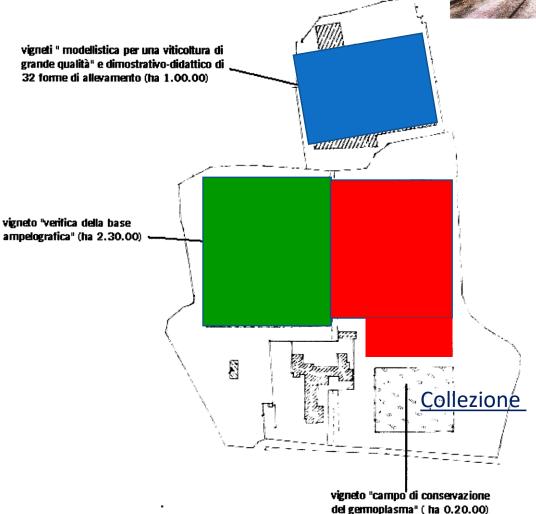
2019: altre 600 selezioni da Glera (tot. 1700 figlie di Glera)

2018: messa a dimora di altre 900 selezioni da Glera (tot. 1500 di cui 1100 circa da Glera)

CREA VE Velletri - ARSIAL

ARS AL

Agenzia Regionale per lo Sviluppo e l'Innovazione dell'Agricoltura nel Lazio


Vitigni resistenti Rauscedo

Miglioramento genetico vitigni autoctoni

Cloni i vitigni autoctoni a conduzione biologica

per lo Sviluppo e l'Innovazione

dell'Agricoltura nel Lazio

<u>Pianificazione attività</u> 2018-2021

- Nuovi impianti per prove di conduzione in regime biologico
- Recupero di vitigni autoctoni minori non ancora iscritti al registro varietale
- Miglioramento genetico di vitigni autoctoni, Bellone e Cesanese (e test vitigni resistenti oggi disponibili)
- Piccolo impianto ad uso didattico dimostrativo con forme di impianto più diffuse

ARS AL

Agenzia Regionale per lo Sviluppo e l'Innovazione dell'Agricoltura nel Lazio

Si ringraziano:

Barbara de Nardi, Marco Stefanini, Silvia Vezzulli e i molti amici della F. Mach, Geilweilerhof (D), Pecs(H), UniUD, Colmar (F)...